SABRE

EXERCISE 3 STATE DEPENDENCE ANSWERS

File: WEMP2.DAT

THE VARIABLES

case	individual identifier
femp	wife's employment status; 1=employed, 0=unemployed
mune	husband's employment status; 1=unemployed, 0=employed
time	calendar time (year-1975)
und1	children aged < 1 year old; 1=yes, 0=no
und5	children aged 1 - 5 years old; 1=yes, 0=no
age	mother's age

5. Note the deviance and degrees of freedom for these models.

int Deviance=2054.4619 on 1579 residual degrees of freedom

int +mune Deviance=1970.9970 on 1578 residual degrees of freedom

int +mune + und5 Deviance=1757.3600 on 1577 residual degrees of freedom

mixture model

Deviance=1237.1568 on 1574 residual degrees of freedom

dis e

Parameter	Estimat	e	S. Error	
int	2.0098	0.19	833	
mune	-2.7033	0.4	42577	
und5	-2.6619	0.2	23273	
scale	2.1082	0.1	9258	
			PROBABILITY	7
end-point 0	0.78410	E-01	0.37373E-01	0.68815E-01
end-point 1	0.61023	E-01	0.55981E-01	0.53556E-01

8. *drop y*

Model type: `dropped` binary logistic-normal mixture with end-points

Number of observations = 1425 Number of cases = 151

X-vars df = 3 Scale df = 1 End-point df = 2

Deviance = 1099.6531 on 1419 residual degrees of freedom

dis e

Parameter	Estimai	te	S. Error	
int	2.0887	0.19	 711	
mune	-2.8095	0.4	45169	
und5	-2.4720	0.2	24501	
scale	2.2569	0.1	9934	
			PROBABILIT	ΓΥ
end-point 0	0.75473	BE-01	0.39736E-01	- 0.67582E-01
end-point 1	0.41291	E-01	0.58963E-01	0.36974E-01

9. Now fit a lagged y variable.

lag y

Deviance = 878.93601 on 1420 residual degrees of freedom Deviance decrease = 220.71708 on 1 residual degree of freedom **THERE IS NOT AN ERROR IN SABRE HERE - THE DF SHOULD BE 1420**

dis e

Parameter	Estimate	Å	S. Error	
int	-0.81251	0.22	417	
mune	-1.6864	0.4	1477	
und5	-1.0872	0.2	3191	
lag	3.5967	0.226	898	
scale	0.93090	0.2	1221	
			PROBABIL	ITY
end-point 0	0.00000E	Z+00	FIXED	0.00000E+00
end-point 1	0.000000E	z + 00	FIXED	0.00000E+00

10. Is the lag significant?

Yes.

11. What does this mean substantively?

The wife's employment status in the previous year is important in the explanation of her current employment status.

(The wife's employment status at t-1 is important as an explanation of her employment status at t.)

12. Is there still significant residual heterogeneity?

Yes. Scale = 0.93090 with a standard error of 0.21221.

13. Now fit a two-state Markov model.

markov y
Deviance = 846.49334 on

846.49334 on 1417 residual degrees of freedom

dis e

Parameter	Estimat	e S	S. Error	
State 0				
int	-1.3981	0.290	59	
mune	-1.9934	0.7	4696	
und5	-0.25101	0.3	5122	
scale	1.2878	0.29	949	
State 1				
int	3.0890	0.180	17	
mune	-1.3567	0.4	6530	
und5	-1.8990	0.20	6430	
scale	0.11596	0.27	7669	
			PROBABIL	ITY
end-point 0	0.00000	E+00	FIXED	 0.00000E+00
end-point 1	0.00000	E+00	FIXED	0.00000E+00

14. State 0 are the women who were unemployed at t-1. What is the effect of husband's employment status for these women?

A husband being unemployed has a significant negative effect.

15. State 1 are women who were employed at t-1. What is the effect of husbands's employment status for these women?

A husband being unemployed has a significant negative effect however this is smaller than for women who are unemployed at t-1 (State 0).

16. What is the effect of having a child age 1- 5 years old the same for women in State 0 and State 1?

They are not significant for women who were unemployed at t-1 (State 0) but are significant for women who were employed at t-1 (State 1).

17. Is there significant residual heterogeneity? *Yes, for women in State 0 but not for women in State 1*.